四通道动态LED阵列近红外光谱仪
DUAL-KLAS-NIR
同步测量PSII活性(叶绿素荧光)和PSI活性(P700)
PC(质体蓝素)Fd(铁氧还蛋白)的氧化还原变化
相较于经典的双通道叶绿素荧光仪DUAL-PAM-100测量系统,新一代四通道动态LED阵列近红外光谱仪DUAL-KLAS-NIR,在光合作用电子传递链组分质体蓝素(PC)、光系统I反应中心(P700)及铁氧还蛋白(Fd)的氧化还原测量方面实现了重大技术突破。它创新性的采用了四波长对近红外探测技术,成功解决了围绕光系统I供体侧和受体侧电子传递精准解析的难题,为光合作用研究开辟了一条崭新的道路。
作为PSI的电子供体和电子受体,PC(质体蓝素)和Fd(铁氧还蛋白)对PSI的氧化还原起着至关重要的调控作用。但一直缺乏科学便捷的手段对其运转状态进行检测。DUAL-KLAS-NIR采用先进的去卷积技术(一种根据来源不同对信号进行分离的技术),能够同时测量4组不同波长对(780-820nm,820-870nm,840-965nm,870-965nm)的信号,实现对P700(PSI反应中心)、PC和Fd的氧化还原状态的同步分析。另外,它还可以测量由540nm和460nm光化光激发的叶绿素荧光。还有, DUAL-KLAS-NIR四通道动态LED阵列近红外光谱仪也可以扩展P515/535模块,测量跨类囊体膜的质子梯度ΔpH和跨膜电位ΔΨ,分析与电子传递耦合的跨类囊体膜质子转移,质子动力势pmf形成。可以扩展NADPH/9-AA模块,测量NADP+的还原程度。最后,DUAL-KLAS-NIR也可以通过联用叶室3010-DUAL与GFS-3000光合仪联用,同步测量光反应电子传递和暗反应CO2同化,系统全面的研究光合作用机理。
从2016年2月Photosynthesis Research杂志发表Schreiber博士团队标题为“Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer”的研究论文,隆重介绍了最新设计的DUAL-KLAS-NIR四通道动态LED阵列近红外光谱仪。时至今日,四通道动态LED阵列近红外光谱仪DUAL-KLAS-NIR已累计发表论文超过80篇。其中不乏Nature Plants,Nature Communications,The Plant Cell,New Phytologist,Plant Physiology,The Plant Journal等植物学领域的专业高分杂志文章(详见附录)。
突出特点:
1. 可测量活体植物叶片或叶绿体/类囊体/藻类悬浮液,对P700、PC和Fd分别进行连续实时的分析。
2. 蓝光460nm和绿光540nm双波长调制叶绿素荧光测量,可分别测量叶片表层和深层细胞的光能转换。
3. 通过板载芯片LED技术设计了高度紧凑的固态照明系统,可提供635nm,460nm的光化光和740nm的远红光,以及635nm单周转和多周转饱和闪光。
4. 光学部件的几何结构完美兼容3010-DUAL联用叶室,可与GFS-3000光合仪组合,在可控条件(光照,温度,湿度,CO2浓度)下同步测量气体交换相关的CO2同化和电子传递相关的氧化还原。
5. 测量光频率范围广(1- 400 kHz),允许连续评估Fo,也可以在高时间分辨率下记录叶绿素荧光快速动态瞬变(如多相荧光上升动力学或脉冲弛豫动力学)。
6. 专业数据记录软件,入门特别简单。
主要功能:
1. 测量暗适应样品的PC,P700和Fd最大氧化/还原量,根据光谱特征可计算PC/P700和Fd/P700的比值,评估PSI及其与供体侧和受体侧的氧化还原平衡,用于PSI复合体组装中间体功能的研究。
2. 测量并记录光适应条件下光合电子传递过程中质体蓝素(PC),PS I反应中心(P700)和铁氧还蛋白(Fd)的氧化还原比例,评估PSI及其与供体侧和受体侧的相互关系和协调性。
3. 可以通过蓝色和/或绿色PAM荧光测量叶片表层和深层细胞的光能转换,非常适合与整个叶子的NIR吸收测量进行对比分析。
4. 完整的慢速诱导动力学曲线和快速诱导动力学曲线测量功能,慢速诱导动力学可进行饱和脉冲分析、淬灭分析,诱导曲线,光合控制,快速光曲线和暗弛豫曲线测量;快速诱导动力学可进行Qa_Decay,Poly300ms等十几种程序测量。
5. 可使用软件的自动测量程序实验,也可以编辑脚本(Script)或者保存手动测量程序(Trigger),轻松执行复杂的测量协议。可自定义测量动作用于特殊诱导过程动力学曲线数据获取和分析,如状态转换和波动光曲线等。
6. 扩展P515/535模块,可测量跨类囊体膜的质子梯度ΔpH和跨膜电位ΔΨ,分析与电子传递耦合的跨类囊体膜质子转移,质子动力势pmf形成。
7. 扩展NADPH/9-AA模块,可测量NADP+的还原程度。
DUAL-KLAS-NIR测量模式选择 | DUAL-KLAS-NIR软件近红外测量光设置 |
软件界面:
同步测量P700, PC, Fd最大氧化还原量 | 同步测量Fluo, P700, PC, Fd慢速诱导动力学曲线 |
同步测量Fluo, P700, PC, Fd光响应曲线 | 同步测量Fluo, P700, PC, Fd诱导曲线+暗弛豫 |
扩展模块:
P515/535 | NADPH/9AA | 3010-DUAL |
1、扩展P515/535模块,可测量跨类囊体膜的质子梯度ΔpH和跨膜电位ΔΨ,分析与电子传递耦合的跨类囊体膜质子转移,质子动力势pmf形成。
2、扩展NADPH/9-AA模块,可测量NADP+的还原程度。
3、扩展3010-DUAL联用叶室,可与GFS-3000光合仪组合,在可控条件(光照,温度,湿度,CO2浓度)下同步测量气体交换相关的CO2同化和电子传递相关的氧化还原。
应用领域:
1. 光合电子传递链复合体的氧化还原状态深入剖析,类囊体膜蛋白组分功能研究,如光系统I的装。
2. 光合合成生物学研究相关的植物学,植物生理学,分子生物学,农学,林学、园艺的领域。
3. 人工光合作用和能源相关领域,如生物光伏等
应用案例:
案例1. 德国Christian-Albrechts大学的科学家Jens Appel使用四通道动态LED阵列近红外光谱仪Dual-KLAS-NIR,测量蓝藻Synechocystis sp.PCC 6803围绕PSI的质体蓝素、P700和FeS簇(包括铁氧还蛋白)的氧化还原状态,首次以绝对值量化了光合生物中通过光系统I的电子流。该研究确定了线性和环式电子传递的比例:环式电子传递占通过PSI的电子流的35%。
Marius L. , et al.2020, BBA – Bioenergetics
http://doi.org/10.1016/j.bbabio.2020.148353
案例2. 德国WALZ的应用科学家Gert Schansker博士使用四通道动态LED阵列近红外光谱仪DUAL-KLAS-NIR测量33种植物的光曲线,探测和表征光合控制的光强度依赖性。研究发现, PC在光强≤400 µmolm-2s-1时完全氧化(阴生植物的叶片的光照强度低于阳生植物叶片)。qP和还原态P700之间的关系可以用于衡量光合控制的程度。除了测量光曲线,也可以使用单个中等光强度来表征叶片之间的相对状态。进一步的发现,在一些适应阴生环境的叶片中,Fd在高光强度下变得更加氧化表明从PQ库到P700的电子传递无法跟上PS I受体侧的电子流出。与光合控制的诱导相比,NPQ诱导需要较低的光强度(类囊体腔酸化程度低)。测量结果还可以用于比较qP和qL,比较的结果是qP是与光合控制更相关的叶绿素荧光参数。
Gert Schansker, 2022, Photosynthesis Research
http://doi.org/10.1007/s11120-022-00934-7
案例3. 芬兰图尔库大学的Tapio Lempiäinen等人通过对正常温度下培养的拟南芥设置5种不同的光处理:(1).不处理,(2).60% PSI光抑制,(3).85% PSI光抑制, (4) .60% PSI光抑制后在生长条件下“恢复”24小时,(5).85% PSI 光抑制后在生长条件下“恢复”24 小时。然后对不同处理样品的主要光合复合物、光合光反应的功能和调节、ATP 合酶和碳同化进行分析。研究功能性PSII和PSI之间的不平衡是否会诱导光合作用适应PSI受限的条件。探索植物短期和长期的驯化机制。研究发现,抑制后直接测量可探测短期适应机制,包括将激发能量重定向到PSI 的类囊体蛋白磷酸化,光合作用反馈调节的变化,比如放松光合作用控制(Photosynthetic Control)和激发能淬灭。处理后恢复24小时测量可以有效探测光合机构的长期适应机制,比如基质氧化还原系统的重建以及ATP合酶和细胞色素b6f丰度的增加。植物在适应了PSI限制条件后无需进行大量PSI修复即可恢复CO2同化能力。对 PSI 抑制的反应表明植物有效地适应了光合机构中发生的变化,这可能是植物适应不利环境条件的关键组成部分。
Lempiäinen, T., et al. 2022.
http://doi.org/10.1111/pce.14400
案例4. 德国亥姆霍兹环境研究中心Lai Bin团队通过四通道动态LED阵列近红外光谱仪Dual-KLAS-NIR系统地研究了在BPV系统中培养的蓝藻集胞藻的光合电子流,揭示了电子传递链中各组分的氧化还原状态,并描绘了相应的电子流向各种汇。该研究表明,EET与PSI下游的类Mehler反应竞争电子。在高浓度下,亚铁氰化物对电子传递链的影响与微量氰化物相似,突出了精心设计BPV实验的必要性。此外,该团队另外一项研究还通过Dual-KLAS-NIR测量PSI、质体蓝素和铁氧还蛋白的氧化还原变化。阐明了生物光伏蓝藻集胞藻动态切换电子源,并根据生理和环境条件,利用不同的细胞外转移途径将电流输出到外部电子汇的机理。
Jianqi Yuan., et al. 2024, http://doi.org/10.1016/j.ese.2024.100519.
Schneider, H., et al. 2025, http://doi.org/10.1111/tpj.17225
案例5. 英国谢菲尔德大学Matthew P Johnson课题组利用基于CRISPR/Cas9的基因编辑技术,在莱茵衣藻中构建了通过PSAF将FNR锚定于PSI的嵌合型突变体。使用DUAL-PAM-100双通道叶绿素荧光仪P515/535模块检测电致变色位移(ECS),使用 DUAL-KLAS-NIR四通道动态LED阵列近红外光谱仪以类似方法测量P700氧化。研究发现,相较于野生型,嵌合突变体因NADPH还原速率降低导致光合生长受限、线性电子传递受阻,且PSI受体侧限制增强。但该突变体同时表现出增强的跨膜质子梯度(ΔpH)和非光化学淬灭(NPQ),表明CET活性显著提升。因此,将FNR锚定于PSI并未促进光合线性电子传递,反而通过牺牲线性电子传递与CO₂固定效率优先支持环式电子传递。这一发现揭示了FNR定位对光合电子流向分配的关键调控作用。
Emrich-Mills, T. Z., et al. 2025.
http://doi.org/10.1093/plcell/koaf042
产地:德国WALZ
代表文献:
数据来源:光合作用文献Endnote数据库
原始数据来源:Google Scholar
2025
1、Antal, T. K., et al. (2025). "Analysis of chlorophyll fluorescence induction curves (OJIP transients) of phytoplankton under conditions of high photosynthetic activity." Journal of Applied Phycology.
http://doi.org/10.1007/s10811-024-03429-1
2、Emrich-Mills, T. Z., et al. (2025). "Tethering ferredoxin-NADP+ reductase to photosystem I promotes photosynthetic cyclic electron transfer." The Plant Cell.
http://doi.org/10.1093/plcell/koaf042
3、Pshybytko, N. L. (2025). "Assessment of the Electrochemical Potential of Thylakoid Membranes in Hordeum vulgare L. Sprouts of Different Ages Under Heat Stress Using Differential Absorption Spectroscopy." Journal of Applied Spectroscopy.
http://doi.org/10.1007/s10812-025-01852-x
4、Schneider, H., et al. (2025). "Understanding the electron pathway fluidity of Synechocystis in biophotovoltaics." The Plant Journal 121(2): e17225.
http://doi.org/10.1111/tpj.17225
2024
5、Doello, S., et al. (2024). "Metabolite-level regulation of enzymatic activity controls awakening of cyanobacteria from metabolic dormancy." Current Biology.
http://doi.org/10.1016/j.cub.2024.11.011
6、Emrich-Mills, T. Z., et al. (2024). "Tethering ferredoxin-NADP+ reductase to photosystem I promotes photosynthetic cyclic electron transfer." bioRxiv: 2024.2011.2001.621516.Hani, U. (2024). Regulation of cyclic and pseudocyclic electron transport, Université Paris-Saclay.
http://doi.org/10.1101/2024.11.01.621516
7、Jones, L. M. (2024). Stress Response in Populus balsamifera Under Projected Weather Extremes.[学位论文]
8、Nikkanen, L., et al. (2024). "PGR5 is needed for redox-dependent regulation of ATP synthase both in chloroplasts and in cyanobacteria." bioRxiv: 2024.2011.2003.621747.
http://doi.org/10.1101/2024.11.03.621747
9、Niu, Y. (2024). Probing Dynamic Regulation of Photosynthesis Using Harmonically Oscillating Light.Volgusheva, A. A., et al. (2024). "Effect of the insecticide clothianidin on the photosynthetic electron transport chain in pea." Photochemistry and Photobiology n/a(n/a).[学位论文]
10、Hani, U. and A. Krieger-Liszkay (2024). "Manganese deficiency alters photosynthetic electron transport in Marchantia polymorpha." Plant Physiology and Biochemistry: 109042.
http://doi.org/10.1016/j.plaphy.2024.109042
11、Hubáček, M., et al. (2024). "Strong heterologous electron sink outcompetes alternative electron transport pathways in photosynthesis." The Plant Journal n/a(n/a).
http://doi.org/10.1111/tpj.16935
12、Mattila, H., et al. (2024). "Flavonols do not affect aphid load in green or senescing birch leaves but coincide with a decrease in Photosystem II functionality." Biology Open.
http://doi.org/10.1242/bio.060325
13、Ortega-Martínez, P., et al. (2024). "Glycogen synthesis prevents metabolic imbalance and disruption of photosynthetic electron transport from photosystem II during transition to photomixotrophy in Synechocystis sp. PCC 6803." New Phytologist n/a(n/a).
http://doi.org/10.1111/nph.19793
14、Degen, G. E. and M. P. Johnson (2024). "Photosynthetic control at the cytochrome b6f complex." The Plant Cell.
http://doi.org/10.1093/plcell/koae133
15、Pshybytko, N. L. (2024). "Redox State of Photosynthetic Ferredoxin Under Heat and Light Stress." Journal of Applied Spectroscopy.
http://doi.org/10.1007/s10812-024-01726-8
16、Nies, T., et al. (2024). "A mathematical model of photoinhibition: exploring the impact of quenching processes." in silico Plants 6(1).
http://doi.org/10.1093/insilicoplants/diae001
17、Maekawa, S., et al. (2024). "Enhanced Reduction of Ferredoxin in PGR5-deficient mutant of Arabidopsis thaliana Stimulated Ferredoxin-dependent Cyclic Electron Flow around Photosystem I." Preprints.
http://doi: 10.20944/preprints202401.1303.v1
18、Niu, Y., et al. (2024). "Dynamics and interplay of photosynthetic regulatory processes depend on the amplitudes of oscillating light." Plant, Cell & Environment n/a(n/a).
http://doi.org/10.1111/pce.14879
19、Volgusheva, A. A., et al. (2024). "Effect of the insecticide clothianidin on the photosynthetic electron transport chain in pea." Photochemistry and Photobiology n/a(n/a).
http://doi.org/10.1111/php.14018
20、Yuan, J., et al. (2024). "Molecular dynamics of photosynthetic electron flow in a biophotovoltaic system." Environmental Science and Ecotechnology: 100519.
http://doi.org/10.1016/j.ese.2024.100519
21、Degen, G. E., et al. (2023). "PGR5 is required to avoid photosynthetic oscillations during light transitions." Journal of Experimental Botany.
http://doi.org/10.1093/jxb/erad428
22、Ohnishi, M., et al. (2023). "Evaluating the Oxidation Rate of Reduced Ferredoxin in Arabidopsis thaliana Independent of Photosynthetic Linear Electron Flow: Plausible Activity of Ferredoxin-Dependent Cyclic Electron Flow around Photosystem I." International journal of molecular sciences 24(15): 12145.
http://doi.org/10.3390/ijms241512145
23、Niu, Y., et al. (2023). "Plants cope with fluctuating light by frequency-dependent nonphotochemical quenching and cyclic electron transport." New Phytologist n/a(n/a).
http://doi.org/10.1111/nph.19083
24、Flannery, S. E., et al. (2023). "STN7 is not essential for developmental acclimation of Arabidopsis to light intensity." The Plant Journal n/a(n/a).
http://doi.org/10.1111/tpj.16204
25、Gunell, S., et al. (2023). "Enhanced function of non-photoinhibited photosystem II complexes upon PSII photoinhibition." Biochimica et Biophysica Acta (BBA) - Bioenergetics: 148978.
http://doi.org/10.1016/j.bbabio.2023.148978
26、Ishii, A., et al. (2023). "The photosystem I supercomplex from a primordial green alga Ostreococcus tauri harbors three light-harvesting complex trimers." eLife 12: e84488.
http://doi.org/10.7554/eLife.84488
27、Molinari, P. E., et al. (2023). "Lighting the light reactions of photosynthesis by means of redox-responsive genetically encoded biosensors for photosynthetic intermediates." Photochemical & Photobiological Sciences.
http://doi.org/10.1007/s43630-023-00425-1
28、Degen, G. E., et al. (2023). "High cyclic electron transfer via the PGR5 pathway in the absence of photosynthetic control." Plant Physiology.
http://doi.org/10.1093/plphys/kiad084
29、Furutani, R., et al. (2023). "Higher Reduced State of Fe/S-Signals, with the Suppressed Oxidation of P700, Causes PSI Inactivation in Arabidopsis thaliana." Antioxidants 12(1): 21.
http://doi.org/10.3390/antiox12010021
2022
30、Santana-Sánchez, A., et al. (2022). "Flv3A facilitates O2 photoreduction and affects H2 photoproduction independently of Flv1A in diazotrophic Anabaena filaments." New Phytol n/a(n/a).
http://doi.org/10.1111/nph.18506
31、Lazár, D., et al. (2022). "Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light." Journal of Experimental Botany 73(18): 6380–6393.
http://doi.org/10.1093/jxb/erac283
32、Lucius, S., et al. (2022). "CP12 fine-tunes the Calvin-Benson cycle and carbohydrate metabolism in cyanobacteria." 13.
http://doi.org/10.3389/fpls.2022.1028794
33、Khruschev, S. S., et al. (2022). "Machine learning methods for assessing photosynthetic activity: environmental monitoring applications." Biophysical Reviews.
http://doi.org/10.1007/s12551-022-00982-2
34、Penzler, J.-F., et al. (2022). "Commonalities and specialties in photosynthetic functions of PROTON GRADIENT REGULATION5 variants in Arabidopsis." Plant Physiology.
http://doi.org/10.1093/plphys/kiac362
35、Appel, J., et al. (2022). "Evidence for Electron Transfer from the Bidirectional Hydrogenase to the Photosynthetic Complex I (NDH-1) in the Cyanobacterium Synechocystis sp. PCC 6803." Microorganisms 10(8): 1617.
http://doi.org/10.3390/microorganisms10081617
36、Lempiäinen, T., et al. (2022). "Plants acclimate to Photosystem I photoinhibition by readjusting the photosynthetic machinery." Plant Cell Environ.
http://doi.org/10.1111/pce.14400
37、Schansker, G. (2022). "Determining photosynthetic control, a probe for the balance between electron transport and Calvin–Benson cycle activity, with the DUAL-KLAS-NIR." Photosynthesis Research.
http://doi.org/10.1007/s11120-022-00934-7
38、Burgstaller, H., et al. (2022). "Synechocystis sp. PCC 6803 Requires the Bidirectional Hydrogenase to Metabolize Glucose and Arginine Under Oxic Conditions." Front Microbiol 13: 896190.
http://doi.org/10.3389/fmicb.2022.896190
39、Rodriguez-Heredia, M., et al. (2022). "Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions." Plant Physiology.
http://doi.org/10.1093/plphys/kiab550
40、Wang, Y., et al. (2022). "Pyruvate:ferredoxin oxidoreductase and low abundant ferredoxins support aerobic photomixotrophic growth in cyanobacteria." eLife 11.
http://doi.org/10.7554/eLife.71339
41、Niu, Y., et al. (2022). "A plant’s capacity to cope with fluctuating light depends on the frequency characteristics of non-photochemical quenching and cyclic electron transport." bioRxiv: 2022.2002.2009.479783.
http://doi.org/10.1101/2022.02.09.479783
42、Schmidtpott, S. M., et al. (2022). "Scrutinizing the Impact of Alternating Electromagnetic Fields on Molecular Features of the Model Plant Arabidopsis thaliana." International Journal of Environmental Research and Public Health 19(9): 5144.
http://doi.org/10.3390/ijerph19095144
43、Degen, G. E., et al. (2022). "Supercharged PGR5-dependent cyclic electron transfer compensates for mis-regulated chloroplast ATP synthase." bioRxiv: 2022.2009.2025.509416.
http://doi.org/10.1101/2022.09.25.509416
44、Ishii, A., et al. (2022). "The photosystem I supercomplex from a primordial green alga Ostreococcus tauri harbors three light-harvesting complex trimers." 2022.2011.2008.515661.
http://doi.org/10.1101/2022.11.08.515661
45、Mattila, H., et al. (2022). "Evaluation of visible-light wavelengths that reduce or oxidize the plastoquinone pool in green algae with the activated F0 rise method." Photosynthetica.
http://doi.10.32615/ps.2022.049
2021
46、Furutani, R., et al. (2021). "The difficulty of estimating the electron transport rate at photosystem I." Journal of Plant Research.
http://doi.org/10.1007/s10265-021-01357-6
47、Santana-Sánchez, A. (2021). "DYNAMIC REGULATION OF OXYGENIC PHOTOSYNTHESIS IN CYANOBACTERIA BY FLAVODIIRON PROTEINS."
http://www.utupub.fi/handle/10024/152715
48、Balti, H., et al. (2021). "Differences in Ionic, Enzymatic, and Photosynthetic Features Characterize Distinct Salt Tolerance in Eucalyptus Species." Plants 10(7): 1401.
http://www.mdpi.com/2223-7747/10/7/1401
49、Castell, C., et al. (2021). "New Insights into the Evolution of the Electron Transfer from Cytochrome f to Photosystem I in the Green and Red Branches of Photosynthetic Eukaryotes." Plant and Cell Physiology.
http://doi.org/10.1093/pcp/pcab044
50、Hepworth, C., et al. (2021). "Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I." Nature Plants.
http://doi.org/10.1038/s41477-020-00828-3
51、Mattila, H., et al. (2021). "Singlet oxygen, flavonols and photoinhibition in green and senescing silver birch leaves." Trees.
http://doi.org/10.1007/s00468-021-02114-x
52、Miyake, C. (2021). "Photosynthetic Linear Electron Flow Drives CO2 Assimilation in Maize Leaves." International journal of molecular sciences 22.
http://doi.org/10.3390/ijms22094894
53、Ohnishi, M., et al. (2021). "Photosynthetic Parameters Show Specific Responses to Essential Mineral Deficiencies." Antioxidants 10(7): 996.
http://doi.org/10.3390/antiox10070996
54、Rühle, T., et al. (2021). "PGRL2 triggers degradation of PGR5 in the absence of PGRL1." Nature communications 12(1): 3941.
http://doi.org/10.1038/s41467-021-24107-7
2020
55、Shimakawa, G., et al. (2020). "Near-infrared in vivo measurements of photosystem I and its lumenal electron donors with a recently developed spectrophotometer." Photosynthesis Research 144(1): 63-72.
http://doi.org/10.1007/s11120-020-00733-y
56、Flannery, S. E., et al. (2020). "Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis." The Plant Journal 105(1): 223-244.
http://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.15053
57、Furutani, R., et al. (2020). "Intrinsic Fluctuations in Transpiration Induce Photorespiration to Oxidize P700 in Photosystem I." Plants 9(12): 1761.
http://doi.org/10.3390/plants9121761
58、Kato, H., et al. (2020). "Characterization of a giant photosystem I supercomplex in the symbiotic dinoflagellate Symbiodiniaceae." Plant Physiology: pp.00726.02020.
http://doi.org/10.1104/pp.20.00726
59、Nikkanen, L., et al. (2020). "Functional redundancy between flavodiiron proteins and NDH-1 in Synechocystis sp. PCC 6803." The Plant Journal n/a(n/a).
http://doi.org/10.1111/tpj.14812
60、Sétif, P., et al. (2020). "Identification of the electron donor to flavodiiron proteins in Synechocystis sp. PCC 6803 by in vivo spectroscopy." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1861(10): 148256.
http://doi.org/10.1016/j.bbabio.2020.148256
61、Theune, M. L., et al. (2020). "In-vivo quantification of electron flow through photosystem I – cyclic electron transport makes up about 35 % in a cyanobacterium." Biochimica et Biophysica Acta (BBA) - Bioenergetics: 148353.
http://doi.org/10.1016/j.bbabio.2020.148353
62、Ifuku, K., et al. (2020). "Editorial: O2 and ROS Metabolisms in Photosynthetic Organisms." Frontiers in Plant Science 11: 618550.
http://doi: 10.3389/fpls.2020.618550
63、Mattila, H. (2020). "On singlet oxygen, photoinhibition, plastoquinone, and their interconnections." 研究报告.
http://www.utupub.fi/bitstream/handle/10024/150753/AnnalesAI634Mattila.pdf?sequence=1
64、Mattila, H., et al. (2020). "Action spectrum of the redox state of the plastoquinone pool defines its function in plant acclimation." The Plant Journal 104(4): 1088-1104.
http://doi.org/10.1111/tpj.14983
2019
65、Kadota K, Furutani R, Makino A, Suzuki Y, Wada S, Miyake C: Oxidation of P700 induces alternative electron flow in photosystem I in wheat leaves. Plants 8: 152.
http://doi.org/10.3390/plants8060152
66、Sétif P, Boussac A, Krieger-Liszkay A: Near-infrared in vitro measurements of photosystem I cofactors and electron-transfer partners with a recently developed spectrophotometer. Photosynthesis Research 142: 307-319.
http://doi.org/10.1007/s11120-019-00665-2
67、Telman W, Liebthal M, Dietz K-J: Redox regulation by peroxiredoxins is linked to their thioredoxin-dependent oxidase function.Photosynthesis Research, in press.
http://doi.org/10.1007/s11120-019-00691-0
68、Miyake, C. (2019). "P700 oxidation suppresses the production of reactive oxygen species (ROS) in photosystem I and induces ferredoxin-independent cyclic electron flow within PS I." Photosynthesis Hydrogen Energy Research for Sustainability: 24.
International Conference Photosynthesis Research for Sustainability-2019 (icprs.ru)
2018
69、Kumar V, Vogelsang L, Seidel T, Schmidt R, Weber M, Reichelt M, Meyer A, Clemens S, Sharma SS, Dietz K-J: Interference between arsenic-induced toxicity and hypoxia. Plant Cell and Environment 42: 574-590.
http://doi.org/10.1111/pce.13441
70、Nikkanen L, Toivola J, Trotta A, Guinea Diaz M, Tikkanen M, Aro E-M, Rintamäki E: Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system. Plant Direct 2: e00093.
http://doi.org/10.1002/pld3.93
71、Shimakawa G, Miyake C: Changing frequency of fluctuating light reveals the molecular mechanism for P700 oxidation in plant leaves. Plant Direct 2: e00073.
http://doi.org/10.1002/pld3.73
72、Takagi D, Miyake C: PROTON GRADIENT REGULATION 5 supports linear electron flow to oxidize photosystem I. Physiologia Plantarum 164: 337–348.
http://doi.org/10.1111/ppl.12723
73、Vaseghi M-J, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Müller SM, Dietz K-J: The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife 7: e38194.
http://doi.org/10.7554/eLife.38194
74、Lima-Melo, Y., et al. (2018). "Consequences of photosystem I damage and repair on photosynthesis and carbon utilisation in Arabidopsis thaliana." The Plant Journal.
http://doi.org/10.1111/tpj.14177
75、Nikkanen, L. (2018). "Dynamic regulation of photosynthesis by chloroplast thioredoxin systems." 研究报告.
Lauri Nikkanen: DYNAMIC REGULATION OF PHOTOSYNTHESIS BY CHLOROPLAST THIOREDOXIN SYSTEMS (utupub.fi)
76、Nikkanen, L., et al. (2018). "Multilevel regulation of non-photochemical quenching and state transitions by chloroplast NADPH-dependent thioredoxin reductase." Physiologia plantarum 0(ja).
http://doi.org/10.1111/ppl.12914
2017
77、Schreiber U: Redox changes of ferredoxin, P700, and plastocyanin measured simultaneously in intact leaves. Photosynthesis Research 134: 343–360.
http://doi.org/10.1007/s11120-017-0394-7
78、Hanke, G. (2017). Preface: ferredoxin. Photosynthesis Research. Photosynthesis Research, Springer.
http://doi.org/10.1007/s11120-017-0456-x
79、WALZ (2017). "Announcing a new generation of deconvoluting PAM devices: The Dual/KLAS spectrophotometer " WALZ.
DUAL-KLAS-NIR Fluorescense Measuring System | WALZ
2016
80、Klughammer C, Schreiber U: Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer. Photosynthesis Research 128: 195–214.
http://doi.org/10.1007/s11120-016-0219-0
81、Schreiber U, Klughammer C: Analysis of photosystem I donor and acceptor sides with a new type of online-deconvoluting kinetic LED-array spectrophotometer. Plant and Cell Physiology 57: 1454–1467
http://doi.org/10.1093/pcp/pcw044